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Thanks to our readers (special thanks to Meinulf Göckeler!) we list here
those misprints and errors, that are important to be corrected. (We do not
list trivial typos.)

Chapter 3

p 49: Eq. (3.32) should read

Uµ1
(n0 + µ̂0)

′ = Ω(n0 + µ̂0)Uµ1
(n0 + µ̂0) .

p 62: Eq. (3.72) should read

σ = − 1

a2
ln

(

β

18

)

+O(β) .

Chapter 4

p 81: In the 2nd line after (4.23) the inline expressions should read

a = x0 + ixe and b = x2 + ix1

p 83: Comment to (4.30): If you want to stay near the unit element you do
not need r0 but just use x0 =

√
1− ε2. If one allows negative x0 the SU(2)

matrix for small ε is close to the negative unit element and the SU(3) matrix
diagonal elements can be 1 or -1. Although that may be helpful in sampling
the configuration space, it does not allow to tune the acceptance rate arbitra-
trily close to 1 by decreasing ε.

Chapter 5

p 117: The last sentence of the 2nd paragraph there was a “non‘ too much,
correct it is

Again (5.64) excludes back-tracking loops.



Chapter 6

p 143: The first line of (6.50) should read

Vµ(n) = (1− α)Uµ(n) +
α

6

∑

ν 6=µ

Cµν(n)

Chapter 7

p 159: Eq. (7.13) should read

ψ′ = eiαiTiψ , ψ′ = ψ e−iαiTi

p 159: Eq. (7.15) should read

ψ′ = eiαiγ5Ti ψ , ψ′ = ψ eiαiγ5Ti

p 178: Above (7.82) the reference to Eq. (7.29) should be to (7.48)

p 180: Eq. (7.89) should read

c0 =
1

N

N−1
∑

k=0

r(xk) , cn>0 =
2

N

N−1
∑

k=0

r(xk) Tn(xk) .

where xk = cos

((

k +
1

2

)

π

N

)

.

p 183: Ref. 7 correctly is

L. H. Karsten, Phy. Lett. B 104, 315 (1981)

Chapter 8

p 187: In Eq. (8.7) the | det[A]| should read det[A]



p 198: Replace eqns, (8,42) and (8.43) (and the text) by:

The resulting force is a linear combination of the Tj and therefore traceless
and hermitian,

−β
6

8
∑

i=1

Ti tr
[

iTi
(

U A− A† U †
)]

.

Actually, this is just the traceless part of i (U A−A† U †) and may be written
as

− β

12
i
[(

U A− A† U †
)

− tr
(

U A− A† U †
)

/3
]

.

We have used the identity

∑

j

Tj tr

[

Tj
∑

k

ckTk

]

=
1

2

∑

j

cjTj .

The trace projects out the contribution of Tj (introducing a factor of 1/2) and
the sum reconstructs the expression. If the argument has a non-vanishing
trace, this has to be accounted for as shown.

p 193: The footenote should read

For notational convenience we use Q(nε) ≡ Qn and P (nε) ≡ Pn.

p 193: Eq. (8.24) correctly reads

P (ε− ε) = P0 = P1 +
1

2

(

∂S

∂Q

∣

∣

∣

∣

Q1

+
∂S

∂Q

∣

∣

∣

∣

Q0

)

ε = P0 .

p 195: In Eq. (8.31) the term SG[U ] − φ†(DD†)−1φ should read SG[U ] +
φ†(DD†)−1φ

p 203: The exponent of the pion mass in (8.58) should be negative: −zπ

Chapter 10

p 244: Eq. (10.4) should read

SF

[

ψ′, ψ′
]

= a4
∑

n∈Λ

ψ(n)′1

(

4
∑

µ=1

ηµ(n)
ψ(n+ µ̂)′ − ψ(n− µ̂)′

2 a
+mψ(n)′

)



p 244: Eq. (10.6) should read

SF [χ, χ] = a4
∑

n∈Λ

χ(n)

(

4
∑

µ=1

ηµ(n)
Uµ(n)χ(n+µ̂)−U †

µ(n−µ̂)χ(n−µ̂)
2 a

+mχ(n)

)

p 245: Eq. (10.7) should read

ψ(n) γ5 ψ(n) = η5(n)ψ(n)
′ γ5 ψ(n)

′ ,

p 252: Eq. (10.37) should begin with

Spf
F [Φ,Φ, U ] . . .

p 265: Ref. 13 should read

S. R. Sharpe, PoS LAT2006, 022 (2006)

Chapter 11

p 275: Eqs. (11.42) - (11.44) should read

4
∑

µ=1

1

a

(

V a
µ (n)− V a

µ (n− µ̂)
)

=
1

2
ψ(n)[M, τa]ψ(n) , (11.42)

V a
µ (n) =

1

4

(

ψ(n+ µ̂)(1+ γµ)Uµ(n)
†τaψ(n)

−ψ(n)(1− γµ)Uµ(n)τ
aψ(n+ µ̂)

)

. (11.43)

We can write (11.42) as

∆∗
µV

a
µ (n) =

1
2
ψ(n)[M, τa]ψ(n) , (11.44)

where ∆∗
µ is the backward lattice derivative ∆∗

µf(n) ≡
(

f(n)− f(n− µ̂)
)

/a.

Chapter 12

p 315: Eqs. (12.37) should read

− 1

2a

(

f(aµ)(1− γ4)αβU4(n)abδn+4̂,m + f(aµ)−1(1+ γ4)αβU4(n− 4̂)†abδn−4̂,m

)

,


